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size th calculated from (6), 

th = 0.94M{COS Oh[A20(FWHM)- 6 -  2AA/A tan Oh]}, 

(7) 

is given in the fourth column. Fig. 4, as well as the 
results given in Table 3, agrees well with the TEM 
result, confirming the applicability of the approach 
introduced in this paper. 

Discussion 

Equation (2) is applicable only to ideal powder 
samples, i.e. for powders consisting of strain-free and 
preferred-orientation-free crystaUites, whose orienta- 
tions are completely random and the number of 
which present in the irradiated specimen is very 
large. Furthermore, it was assumed that extinction 
and absorption effects can be neglected. Only such 
an ideal powder is represented in reciprocal space by 
ideally spherical concentric shells with homogenous 
thickness and occupation density. 

Strain, preferred orientation, large absorption 
and/or extinction result in deformations of these 
shells, varying d* (strain), e (absorption, extinction, 
strain) and the occupation density within the shells 
(preferred orientation). It will be shown in paper II 
that all these effects can be represented in reciprocal 
space and have to be taken properly into account, 
resulting in general equations analogous to (2). 

Concluding remarks 

Comparing the width A0h obtained for single-crystal 
diffractometry, expression (lb), with the formula for 
d20, (6), deduced for powder diffraction, it is 

obvious that the main difference is introduced by the 
term corresponding to the size of the coherently 
scattering particles. The random orientation of the 
crystallites in the powder results in COS0h in the 
denominator of this term, causing appreciable 
broadening of the Bragg reflections for large Bragg 
angles only. In single-crystal diffractometry, the crys- 
tal is rotated about the 0 axis during the scan. This 
rotation causes sin20h in the denominator of the 
particle-size term in (lb). The rocking curves are 
therefore broadened appreciably for small as well as 
for large values of Oh. 

I thank Mrs G. Kumpat and Mr G. Ulrich for 
preparing the computer graphics of Figs. 1-4. 
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Abstract 

A procedure for Patterson search, or molecular 
replacement, is described in which the criteria of fit 
are based on matching the asymmetric unit of the 
entire Patterson function. In rotation search, the 
Patterson function is compared with the self- 
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Patterson of the search model; in translation search, 
the comparison is with the full Patterson function of 
the search model. Significant features of the method 
are: (1) all overlaps of vector sets of neighboring 
molecules are taken into account; (2) all overlaps of 
the search model with neighboring copies are 
detected and the evaluation bypassed; and (3) the 
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criteria of fit are flexible and can be expressed in 
either Patterson or reciprocal space. 

Introduction 

In this paper, we consider the task of positioning a 
known or assumed molecule or molecular fragment 
in the unit cell of an unknown structure. In general, 
this task consists of two parts, a rotational part and 
a translational part. Each is accomplished by 
systematic examination of the Patterson function of 
the unknown structure. Many procedures have been 
devised for carrying out this examination in recipro- 
cal space (Rossmann & Blow, 1962) or in Patterson 
space (Huber, 1965, 1985; Nordman & Nakatsu, 
1963; Braun, Hornstra & Leenhouts, 1969) or in the 
space of the spherical-harmonic expansion of the 
Patterson function (Crowther, 1972). 

Common to all rotation-search procedures is the 
neglect of the predictable overlap of neighboring 
vector sets; by this we mean overlap by model vector 
sets centered on neighboring origins of the Patterson 
function. Also neglected is the possible interference 
between the atoms of two copies of the model related 
to one another by a lattice translation. 

In this paper, a procedure is described in which the 
variable and predictable overlap of vector sets is 
taken into account. A check for interference between 
adjacent  search models is also made and, if detected, 
the evaluation of that step in the search is bypassed. 

The basic premise is that the rotational fit is 
judged by a comparison of the complete model self- 
Patterson with the Patterson function of the 
unknown. Translational fit is judged by a similar 
comparison of the complete model Patterson with 
the Patterson function of the unknown. 

In searches for two or more fragments, the pro- 
cedure is easily modified: the model self-Patterson 
(or the complete model Patterson) of fragment (1) 
can be subtracted from the Patterson function prior 
to searching for fragment (2). 

The Patterson function 

The Patterson function of the unknown can be tri- 
clinic, monoclinic or orthorhombic in the present 
version of the program. It must conform to the 
symmetry of the space groups PT, P2/m, C2/m, 
Pmmm or Cmmm. The stored units of triclinic, 
monoclinic and orthorhombic Patterson functions 
are 

triclinic: x = 0-1, y = 0-1, z = 0-1 

monoclinic: x = 0-1, y = 0-~-, z = 0-1 

orthorhombic: x --- 0-1, y = 0-1, z = 0-~. 

This is consistent with the Fourier-synthesis rou- 
tines of Ten Eyck (1973), which are used as subrou- 
tines. We refer to this as the natural Patterson, 
distinct from the model Patterson, as discussed 
below. 

It is assumed that the scale factor and overall 
thermal parameter of the input data for the natural 
Patterson are available; these are expected as input 
to the program. Alternatively, the scale factor and 
overall anisotropic displacement parameters can be 
used. An additional sharpening parameter can also 
be employed. 

Rotation search 

The model is placed in the natural cell - not in a 
large artificial cell - at an arbitrary translational 
position. Its orientation is arbitrary, unless it pos- 
sesses rotational symmetry. The model is stepped 
through the Euler-angle ranges appropriate to the 
crystal system. If the model possesses n-fold rota- 
tional symmetry, this symmetry axis is preferably 
oriented parallel to the axis of the last Euler rotation, 
reducing the necessary search range by a factor of n. 

At each step in the Euler-angle search, a check for 
intermolecular overlap is carried out. This overlap 
check is concerned with molecules related by cell 
translations only, specifically a, b, c, a _ b, a + c, b -+ 
c, a + b +-c. In centered cells, the appropriate frac- 
tional cell translations are used. Overlap is defined 
here as an intermolecular a tom-atom distance less 
than a specified input parameter, OVLPD. A rapid 
algorithm is employed, with the execution time 
essentially proportional to the number of atoms in 
the model rather than its square. If overlap is 
detected, the current Euler-angle setting is bypassed 
and the computation proceeds to the next setting. An 
index that codes for the offending lattice translation 
is saved for subsequent display in the output map. 
The computing time required for the overlap check is 
negligible compared with the evaluation of the 
setting. 

If no intermolecular overlap is detected, a P1 
structure-factor calculation is carried out for the 
model. The resolution is a specifiable input param- 
eter but would normally be the same as the resolu- 
tion of the natural Patterson. The thermal 
parameters are isotropic; a provision exists to allow 
the thermal B's to increase with increasing distance 
from the center of the model. Tables are used for 
trigonometric and exponential functions, as well as 
for scattering factors. 

From the P1 structure factors, the coefficients for 
a P1 Patterson function are obtained, with origin- 
peak removal optional. The P1 Patterson function is 
now computed in the natural cell; its asymmetric unit 
is x = 0-1, y = 0-½, z = 0-1. The fractional cell grid is 
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the same as the fractional cell grid of the natural 
Patterson. If the natural Patterson is triclinic, the 
asymmetric unit of the model Patterson is the same 
as that of the natural Patterson. If the latter is 
monoclinic, the model asymmetric unit is twice the 
size of the natural Patterson asymmetric unit and 
four times if orthorhombic. 

The objective is to calculate the true and complete 
self-Patterson of the model, i.e. the partial-Patterson 
function which contains all the vectors within the 
model and between lattice-translation related copies 
of the model, but which excludes all vectors depen- 
dent on the translational positioning of the model in 
the cell. 

In the triclinic case, this has already been achieved. 
In the monoclinic case, the model Patterson, PM, is 
obtained by combining two parts of the P1 Patterson 
function into the monoclinic asymmetric unit 

PM(x,y,z) = PeT(x,y,z) + Pp-r(1 - x,y, 1 - z), 

where x 0 -!  = O-l, 0-1. If the natural Pat- = 2 ,  Y z =  
terson is orthorhombic, the model Patterson is a 
combination of four parts of the P1 Patterson 
function 

PM(X,y,z) = P~(x ,y , z )  + Pz,~(1 - x,y,1 - z) 

+ Pp~(1 - x,y,z) + P~(x,y ,1 - z), 

where x = 0-1, y = 0-1, z = 0-~. 
The model self-Patterson is now expressed on the 

asymmetric unit of the natural Patterson. At the true 
orientation of the model, the model self-Patterson 
must be contained in the natural Patterson. 

Several criteria of fit are employed and others can 
easily be added. Some of the criteria of fit are 

Sum of products: SPROD = Z(PPat) 

Correlation coefficient: 

CORRL = (NZPPM -- ZPZPM) 
x {[NZp 2 - (Zp)z]l/2[NZpat z 

- (2pat)2],,2}-, 

Here, N is the number of grid points in the asym- 
metric unit or, optionally, all grid points falling 
within the asymmetric unit and the input parameters 
RMIN and RMAX, the minimum and maximum 
Patterson cutoff radii. 

Better discrimination is sometimes achieved if a 
subset of low-P and high-PM values is emphasized; it 
will be noted that many of the Pat subunit values will 
be near zero unless the search model is very large. To 
accomplish this, the P and PM values are sorted on 
R A T  = P/MAX(PM,(PM) ) and only those P and Pat 
values that correspond to the lowest values of RAT 
are considered. The fraction included is governed by 
input parameters, FRAC. To guard against spuri- 

ously negative values of PM being selected, PM is 
replaced by its mean value whenever PM < (PM). A 
particularly fast algorithm is used to sort the arrays 
RAT, P and Pat; the sorting time is insignificant. The 
criteria of fit based on sorting P and Pat are easily 
modified. Some that have been found useful are 

W1MAV (FRAC)=  Z ' [ (P- (P) )Pa t ] /U  

W2MAV (FRAC)=  Z ' [ ( P -  (P})PM]/Z'PM 
and 

t 2 W3MAV (FRAC)=  E ' [ ( P -  (P))P~ ]/~', Pat. 

Here, the sums ~'/ contain only those P and PM 
values that correspond to the FRAC x N lowest 
values of RAT. 

The various criteria of fit are printed as functions 
of the Euler angles. In addition, each is displayed as 
a 'sigma map', a number field giving 100 x ( C -  
(C))/o-(C), where C is the criterion of fit in question. 
Values less than zero are set to zero. Negative inte- 
gers indicate a setting rejected for intermolecular 
overlap; the integer points to the offending lattice 
translation. 

Translation search 

The oriented model is placed in the natural cell and 
stepwise translated through specified ranges of x, y 
and z. As the angular setting presumably has cleared 
the overlap screening carried out in the rotation 
search, no checking for overlap of molecules related 
by lattice translation need be done. 

In non-triclinic ceils, the checking for overlap 
between molecules related by space-group-symmetry 
elements is performed as follows. A set of symmetry 
matrices is specified in the input, each corresponding 
to a symmetry element near a possible translational 
position of the model, whether inside or outside the 
cell. At present only rotation axes and screw axes are 
accommodated. 

A rapid algorithm is used to detect overlap, as 
previously described. If overlap is found, i.e. an 
interatomic distance less than the input parameter 
OLVPD, the translational setting is bypassed and a 
negative integer flag is saved for display in the sigma 
map. This negative integer identifies the offending 
symmetry element. 

If no overlap is detected, the structure factors are 
computed to the desired resolution, normally the 
same as that of the natural Patterson. An unfactored 
structure-factor algorithm is used, i.e. the structure- 
factor sum contains all copies of the model present in 
the cell. Patterson coefficients are computed, with 
optional origin-peak removal, and the asymmetric 
unit of the Patterson function calculated. As in the 
rotation search, several criteria of fit are provided 
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and the selection can easily be extended. In addition 
to the functions mentioned earlier, the R factors at 
low, medium and high resolution, RFCLO, RFCMI  
and RFCHI,  are provided, as well as RFCAL for the 
entire resolution range. In the sigma maps for R 
factors, 100 × ((R) - R)/tr(R) is displayed; values less 
than zero are set to zero. 

Results and discussion 

The procedure has been tested on the Patterson 
function for metmyoglobin, which is monoclinic with 
a = 64.56, b = 30.97, c = 34.86 A, fl = 105.86 °, space 
group P2~. Data to 2 .0A resolution were used 
(Takano, 1977). The Patterson function can be 
computed with an optional sharpening factor, 
exp(SHRP*STH/L**2);  in these tests, SHRP = 0.0 
and 20.0A 2 were used. The origin peak was 
removed. 

Test searches were performed with the program 
described here (GENPAT) and the programs 
L A T S U M  (Lattman & Love, 1972) and T R N S U M  
(Crowther & Blow, 1967) of the M E R L O T  program 
package (Fitzgerald, 1988). 

The results of these searches are given in Table 1. 
In each case, the search fragment was taken as the 
main chain of myoglobin, C~'s omitted, a total of 
612 atoms. In the rotation search with GENPA T, the 
Patterson radial cutoffs were R M I N = 2 . 5  and 
R M A X  = 40.0 A, respectively, but the results were 
not sensitively dependent on these choices. As far as 
possible, all adjustable parameters were chosen to be 
equal to give a valid comparison. Minimum and 
maximum data resolution were 8.0 and 2.0 ,~ in all 
cases. The two-dimensional translation search was 
performed on a 20 x 10 point uniform grid in x and 
z, with the grid points in each search having a 
one-to-one correspondence. The rotation searches 
were performed over a 96-point Eulerian-angle grid, 
uniformly distributed in the relevant angle space. On 
account of differences in Cartesian parameter and 
Eulerian-angle conventions, it was not possible to 
maintain a one-to-one correspondence of the grid 
points in the rotation search. In order to allow the 
GENPAT searches to span the entire search range, 
the overlap distance parameter OVLPD was set to 
zero. For comparison, the searches were repeated 
with OVLPD = 2.5 A~, rejecting any setting with an 
intermolecular interatomic distance less than 2.5 A, 
Selected criteria of fit are shown; there were few 
differences, except that W lMAV, W2MAV and 
W3MAV depend on the value of FRAC, the fraction 
of grid points included in the sums. 

The false-peak statistics presented in Table 1 sug- 
gest that the GENPA T searches achieve a somewhat 
better discrimination than the M E R L O T  searches. 
GENPAT searches of a moderately sharpened 

Table 1. Comparison of  results o f  Patterson searches 

Rota t ion  and  t ransla t ion searches were pe r fo rmed  with a 
612-a tom myog lob in  polyglycine main-cha in  model .  The  criteria 
o f  fit are defined in the text. Peak  heights are the n u m b e r  o f  
s t andard  deviat ions  above  the mean  o f  the search function.  F o r  
R F C A L  the entry  is the n u m b e r  o f  s tandard  deviat ions  below the 
mean.  

(a) Ro ta t ion  searches 
Program GENPA T, ROT MERLOT, LA TSUM 
Criterion of fit CORRL CORRL W3MAV (0.8) 
SHRP (A 2) 20.0 0.0 0.0 
True orientation 9.15 8.94 8.85 8.02 
Highest false 0.71 0.89 0.84 1.36 
False > 1.000, 0 0 0 1 
False > 0.750, 0 1 1 7 
False > 0.500, 2 5 5 12 
Points evaluated, 96 96 

OVLPD = 0.0 A 
CPU time (s) 819 3834 
Points evaluated 23 

OVLPD = 2.5 A 
CPU time (s) 207 

(b) Trans la t ion  searches 
Program GENPA T, TRN MERLOT, TRNSUM 
Criterion of fit CORRL CORRL RFCAL 
SHRP (,~2) 20.0 0.0 0.0 
True position 11.82 ll.15 12.55 9.19 
Highest false 1.19 1.45 1.32 2.36 
False > 1.000" 4 9 4 15 
False > 0.750, 13 20 7 30 
False > 0.500, 28 36 27 51 
Points evaluated, 200 200 

OVLPD = 0.0 A 
CPU time (s) 1579 384 
Points evaluated, 9 

OVLPD = 2.5/~ 
CPU time (s) 82 

(SHRP = 20.0 A 2) Patterson function further 
improve the results. The reflection data in the 
M E R L O T  searches were not sharpened and thus, the 
comparison should be made with the SHRP -- 0.0 A 2 
GENPAT searches. On a setting-by-setting basis, 
GENPA T's R O T  is 4.7 times faster than MERLOT's  
LATSUM,  whereas MERLOT's  T R N S U M  is 4.1 
times faster than GENPA T's TRN. Choosing even a 
conservative value of 2.5 ,~ for the overlap distance 
realizes a big advantage in computing time. Clearly, 
this advantage depends on the dimensions of the 
search model. 

The execution time for the GENPA T program is 
proportional to the number of Euler-angle settings 
evaluated, i.e. not bypassed, and is approximately the 
same for ROT and TRN. It is also proportional to 
the number of structure factors calculated at each 
setting. Finally, it is proportional to the number of 
atoms in the model fragment, provided it is large. If 
it is small, a penalty will be paid for inefficient 
vectorization. 

The execution time is essentially independent of 
the number of Euler-angle settings bypassed for 
molecular overlap. It is also essentially independent 
of the density of the Patterson grid and of the 
number and types of criteria of fit selected. The times 
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given in Table 1 are for an IBM 9021-720 mainframe 
computer. 

The program is in principle available for distribu- 
tion, but interested parties should consult with the 
author first. 
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Abstract 

As a pedagogical illustration of the Fourier-space 
approach to the crystallography of quasiperiodic 
crystals, a simple derivation is given of the space- 
group classification scheme for hexagonal and 
trigonal quasiperiodic crystals of rank 4. The 
categories, which can be directly inferred from the 
Fourier-space forms of the hexagonal and trigonal 
space groups for periodic crystals, describe general 
hexagonal or trigonal quasiperiodic crystals of rank 
4, which include but are not limited to modulated 
crystals and intergrowth compounds. When these 
general categories are applied to the special case of 
modulated crystals, it is useful to present them in 
ways that emphasize each of the subsets of Bragg 
peaks that can serve as distinct lattices of main 
reflections. These different settings of the general 
rank-4 space groups correspond precisely to the 
superspace-group description of (3+ 1) modulated 
crystals given by de Wolff, Jannsen & Janner [Acta 
Cryst. (1981), A37, 625-636]. As a demonstration of 
the power of the Fourier-space approach, the space 
groups for hexagonal and trigonal quasiperiodic 
crystals of arbitrary finite rank are derived in a 
companion paper [Lifshitz & Mermin (1994). Acta 
Cryst. A50, 85-97]. 

• I. Introduction 

Crystals used to be defined as materials periodic on 
the atomic scale. As such, they were classified by 
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their space groups - subgroups of the full Euclidean 
group that bring a periodic density into coincidence 
with itself. Because of the growing numbers and 
varieties of quasiperiodic crystals, crystals have been 
redefined* as materials whose diffraction patterns 
contain Bragg peaks, thereby shifting the essential 
attribute of crystallinity from position space to 
Fourier space. A corresponding shift in the crystal- 
lographic classification scheme, proposed thirty years 
ago by Bienenstock & Ewald (1962), has not, how- 
ever, been widely accepted, probably because they 
advocated Fourier-space crystallography before 
quasiperiodic crystals had become of major interest, 
when there was no strong incentive to make the shift. 
Now there is. 

The conventional extension of the classification 
scheme to quasiperiodic materials, developed and 
used by de Wolff, Janssen & Janner (1981) (hence- 
forth JJdW)~ to find the 'superspace groups' of 
(3 + 1) incommensurately modulated crystals, retains 
the old criterion of periodicity as the starting point 
for a crystallographic classification scheme and must 
therefore treat quasiperiodic structures as three- 
dimensional sections of structures periodic in a 
higher-dimensional superspace. The need for such a 
maneuver is avoided by the Fourier-space classifi- 

* Statement of 'terms of reference' of the ad interim Commis- 
sion on Aperiodic Crystals of the International Union of Crystal- 
lography. 

t See also Yamamoto, Janssen, Janner & de Wolff (1985) and 
Janssen, Janner, Looijenga-Vos & de Wolff (1992). 
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